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Filtering a Square Wave %-D

 Given a square wave input with frequency fsq ;
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* into a low pass filter with corner frequency f :

Low Pass Filter
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e If fc<<<fsq Whatisv (the voltage across R)?



Consider the spectrum ‘%‘3

Fourier Series:
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Spectrum cont’d.

The Square Wave

* Here we consider a signal which over one period is given by
1.0=t<T,/2
s(r) = |
0. Tp/2=t<T,

— This 1s actually called a 50% duty cycle square wave, since
it 1s on for half of its period

s(r) one period




Spectrum cont’d.

* We solve for the Fourier coefficients via integration (the Fou-
rier integral)

1 Lo/2 T/ Tolke

a, = — (1)e dt+0
To'
T,/2
1 E—f{znffr{:-}h ]_E—j’n:k
T To| 2/ Ty)k ; - j2mk
« Notice that 7" = —1.s0
k
a, = !;_(_—”—fﬂr k=0
j2nk

and for £ = 0 we have
IT,/2 .
ag = L {l}e_jﬂdf -1 (DC value)
Ty 2
— This is the average value of the waveform, which is depen-

dent upon the 50% aspect (i.e., halfway between 0 and 1)



Spectrum cont’d.

* In summary,

L k=0
2
d; = 4
FT L k=113, 45
Jrk
L 0. k=#2,44,46

 DC (zero freq.) component is % the peak
 All even harmonics are O

 Therefore only odd harmonics are present



Spectrum cont’d. ‘%‘3

e Amplitude spectrum (for 10 V pk-pk square wave):

de (V)

| “ |
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Harmonic Number

Zero freq. amplitude: 5V

1

15t harmonic peak amplitude: 2x-=6.366V

T

2"d harmonic peak amplitude: ov
34 harmonic peak amplitude: 2x2=2122v



Filtering the square wave  d&p

 Low pass filter magnitude response:

* Filter component values: L =560 uH,C = 100 uF,R = 5 0
e Filter corner frequency: f. =673 Hz

* Square wave: f;,:=40kHz

Bode Diagram

Magnitude (dB)

10
Frequency (Hz)

e Attenuation at 15t harmonic (40 kHz) is -71 dB
e Attenuation at 3" harmonic (120 kHz) is -90 dB
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Filtering the square wave, cont’d

* First harmonic filtered peak amplitude:

e -71 dB attenuation = attenuation by a factor:
71

10(‘ %) = 0.000283 =
6.366 X 0.000283 = 1.8 mV

 =» peak-peak amplitude: 2x1.8=3.6mV



PECS simulation:
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Filtering the square wave, cont’d

e PECS simulation result:
Peak-peak output ripple: 3.5 mV

 Fourier analysis result:
First harmonic only filtered pk-pk amplitude: 3.6 mV



Dc-to-dc Buck Converter @

e Convert a DC voltage to a lower DC voltage level at high efficiency

* Chop up the input voltage (Vg) and then filter it

* Inclusion of a single-pole, double-throw switch produces a
rectangular waveform to the output filter
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Til T |
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Dc-to-dc Buck Converter, cont’da’%'D

e Three sections
1. Input voltage, vg

2. Single-pole, double-throw switch
3. Low pass filter

Input Switch Low Pass Filter
DT, Lo
0__~ 4"A",
d 9 D!Tq +
n :
Vo == T




Average Switch Modelling, cont’d

() 4
¥ 'L."x
...... V=DV,
0
~— DT, —>i+(1-D)T, t
switch i
position: 1 2 i 1

1 (T
) =7 | v @t = (@) (vy)
SY0

(X) <—— Denotes the average of the variable x.

Note: d and vg are permitted to vary.



Average Switch Modelling, cont’d C-%-D

Notation:

Let X be a variable of interest, it may represent quantities
such as duty ratio, d, input voltage, v, , input voltage to
the low pass filter, Us, and output current, i,.

Due to the switching action the system is time varying. To simplify the analysis
we will look at the average behavior of the system and produce a time invariant
model of the system.

Therefore we are interested in looking at average signals denoted by (X) :
We have just derived the relationship: (vs) — (d) i (Ug>

However, to simplify the notation we will drop the angular bracket notation
with the understanding that henceforth x now represents an averaged
variable. With this simplified notation, the above equation becomes:

Vs =d - vy,



Average Switch Modelling, cont’d C-%-D

Vs =d -,

Note that this formula represents the product of two variables.
Consequently it is nonlinear. The above is a nonlinear model.

To derive a linear model we will need to linearize around a steady
state operating point under the assumption of small-signal
deviations from this operating point.

We will use a caret ‘"’ to indicate small deviations so that X
represents a small deviation away from the steady state
operating point X,sothat: X =x — X or

x=X+X

This states that an averaged variable x in general consists of a
steady state average X plus a small signal deviation X . This
relationship will be used next to produce a linear model.



Average Switch Modelling, cont’d c-%a

Vs =d - vy
Let:
ve = Vs + U where D, <<V
-~ ~ \
d=D+d where d << D <—— Small signal assumption
~ . /
Vg = Vg + Uy where Vg << Vg
=

i+ 0s=(D+d) - (V, +9,)

= DV + D¥ + Vyd + di,

| | \
DC term First order terms Nonlinear term
(zero order term) (higher order terms)

* The product of the two small-signal variations will be small and so will be neglected.
This leaves only the linear terms. In this way we have linearized the model.



Average Switch Modelling, cont’d c-%a

Equating zero order terms on both sides results in the

DC model:
V; = DV,

Since the low pass filter has a DC gain of unity (neglecting
losses) the DC converter output voltage V is given by:

V=1V,

=
V =DV,



Average Switch Modelling, cont’d @

Equating first order terms on both sides results in the
small-signal model:

Dy = DD, + V,d

and



System Transfer Functions c.%g

1) Transfer Function G, (s): G, () 2
vg o

Q@ ‘ D

This transfer function quantifies how variations in the input voltage 7,

propagate to appear as variations in the output voltage 7.
input ¥, represents a disturbance signal

2) Transfer Function G,4(s): G (s) 2
vd —

d
This transfer function quantifies how variations in the duty ratio d

propagate to appear as variations in the output voltage 7.
duty ratio d represents the control signal



System Transfer Functions

Input Switch Low Pass Filter
DT, L oon
o__- Y Y \AA,
d ODrT +
Vv, — | +
S v C —— v §R
"/7\ /\S /\
Gyg(s) = == =2=+= =D Gppr ()
g g -Ss



System Transfer Functions, cont’d c-%a

Output section of the Buck converter is a low pass filter:

Low Pass Filter
I rp
—Y Y L ap,
+
+
U (F —— v R
% 1
Grpr(S) =% = 2
Ug S S
1+ —+ (=
w0 Wy
where
0= VI 1
TLC+% 0 1/LC



System Transfer Functions, cont’d @

: D
3) Transfer Function = (s):
0
» The effect of output current variations, 1,, causing output

voltage variations, 7, is quantified by transfer function —Z,,;.
" Inputi,represents a disturbance signal

DT ; Ly i
o_—»1Y Y 1 > "
ODITE ]0
_I_
Vo —/ ¢ =—— R V C) A
- \/
D
Zout = —



System Transfer Functions, cont’d @

first subinterval, DT: second subinterval, D'T:
L L,
1YYy, - 0 Y Y, -
ot ot
YT T gRT T c == gnﬁl
B ZM _ Zom
Zour = (SL+ 1) || — || R
=
SL
T'L(1+E)
LZout = — S S \2
1+w0Q+ (wo)
where
0= V€ 1
rLCHs Yo = Ic



System Transfer Functions, cont’d

Addition of the Pulse Width Modulator:

L

DT, "
3/ W
+ d/' D'T, c— pU
Vy R T 14
PWM
Comparator
e
<_°
e
v d
. G j— — 0 —
PWM 35
d v,

= Gyq

Plo

Control-to-output transfer function:



System Transfer Functions, cont’d

d
Pulse Width Modulator (PWM) ‘describing function”:  Gpyy = <

C
The modulator consists of a comparator driven by a sawtooth waveform,

Vsqw, At one input and the control signal, v, at the other. This produces a
rectangular waveform at the output with a duty ratio, d.

vpwas (1)

Uy

ol v (1)

e i i i Vsaw (t)

Sawtooth waveform
has a peak-to-peak
amplitude of V.

[/

-
3




System Transfer Functions, cont’d C-%-D

* Through a Fourier analysis of the waveform produced by
the PWM the ‘describing function’ can be derived.

* A describing function gives the frequency response of the
fundamental component in the output spectrum.

* The resultis given by:

- d 1
PWM 96 VM

V1S the peak-to-peak amplitude of sawtooth waveform.



System Transfer Functions, cont’d G%-)

Summary of Transfer Functions of the
buck converter and modulator

. S s \2 _ WLc 1
A(S)—1+w—OQ+(w—O), Q_—’ Wy = —



System Transfer Functions, cont’d C-%D

Open Loop transfer functions:

Converter
Power Stage

20(3) —» Zou (9)

Pulse Width

Modulator ) —
0,(s) 1 d(s) t 0(s)
—» p Goals) n Y




Closed loop system C'%D

The open loop system is closed in a loop through a
voltage divider and feedback compensator

o_~ LYY Ap, —>
d
+ / D'T +
vV, —/—
g c== RSV
PWM = S =
Comparator R

Feedback ‘
Compensator
+ S R,

e B



Closed loop system: block
diagram representation

Converter
Power Stage

io(s) — P Zou(s)

'IA.«",-),(S) e Gng(‘?)
Pulse Width
Compensator Modulator .

Bres(=0) .] d(s) T i(s)
% G(s) —» — | Goals) ——p
Reference Vi +

A —
T(s)
(Loop Gain)

Feedback Gain

Input

I(s) |«

H(s) - feedback gain R, +R,



Summary C-(%D

e Buck dc-to-dc voltage converter
* Basic operation of chopping up input voltage and then filtering

Used Fourier analysis to determine unfiltered residuals
The system has one output, the output voltage, v
Identified inputs to the system:

d — duty ratio, the control input

v, — input voltage, a disturbance input

L, - output current, a disturbance input
Determined three transfer functions for the converter:

Gpa(s), Gyg (s) and Zyy¢ (5).
Discussed the ‘describing function’ analysis to model the PWM

Through a process of averaging and linearization a linear time
invariant (small-signal) model of the system was obtained

* Next, stability analysis

33



